Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.476
Filtrar
1.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695251

RESUMO

Although exogenous calcitonin gene­related peptide (CGRP) protects against hyperoxia­induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia­induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model. ELISA was performed to detect the CGRP secretion. Immunofluorescence, quantitative (q)PCR, and western blotting were used to detect the expression and localization of CGRP receptor (CGRPR) and transient receptor potential vanilloid 1 (TRPV1). Cell counting kit­8 and flow cytometry were used to examine the proliferation and apoptosis of treated cells. Digital calcium imaging and patch clamp were used to analyze the changes in intracellular Ca2+ signaling and membrane currents induced by CGRP in A549 cells. The mRNA and protein expression levels of Cyclin D1, proliferating cell nuclear antigen (PCNA), Bcl­2 and Bax were detected by qPCR and western blotting. The expression levels of CGRPR and TRPV1 in A549 cells were significantly downregulated by hyperoxic treatment, but there was no significant difference in CGRP release between cells cultured under normal air and hyperoxic conditions. CGRP promoted cell proliferation and inhibited apoptosis in hyperoxia, but selective inhibitors of CGRPR and TRPV1 channels could effectively attenuate these effects; TRPV1 knockdown also attenuated this effect. CGRP induced Ca2+ entry via the TRPV1 channels and enhanced the membrane non­selective currents through TRPV1 channels. The CGRP­induced increase in intracellular Ca2+ was reduced by inhibiting the phospholipase C (PLC)/protein kinase C (PKC) pathway. Moreover, PLC and PKC inhibitors attenuated the effects of CGRP in promoting cell proliferation and inhibiting apoptosis. In conclusion, exogenous CGRP acted by inversely regulating the function of TRPV1 channels in alveolar cells. Importantly, CGRP protected alveolar cells from hyperoxia­induced injury via the CGRPR/TRPV1/Ca2+ axis, which may be a potential target for the prevention and treatment of the HILI.


Assuntos
Células Epiteliais Alveolares , Apoptose , Peptídeo Relacionado com Gene de Calcitonina , Cálcio , Proliferação de Células , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Apoptose/efeitos dos fármacos , Células A549 , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Hiperóxia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos
3.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709307

RESUMO

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Ácido Láctico , Lipopolissacarídeos , Transportadores de Ácidos Monocarboxílicos , Fibrose Pulmonar , Simportadores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Simportadores/metabolismo , Simportadores/genética , Simportadores/antagonistas & inibidores , Camundongos , Ácido Láctico/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
Int Immunopharmacol ; 133: 112129, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652964

RESUMO

Lung injury in sepsis is caused by an excessive inflammatory response caused by the entry of pathogenic microorganisms into the body. It is also accompanied by the production of large amounts of ROS. Ferroptosis and mitochondrial dysfunction have also been shown to be related to sepsis. Finding suitable sepsis therapeutic targets is crucial for sepsis research. BTB domain-containing protein 7 (KBTBD7) is involved in regulating inflammatory responses, but its role and mechanism in the treatment of septic lung injury are still unclear. In this study, we evaluated the role and related mechanisms of KBTBD7 in septic lung injury. In in vitro studies, we established an in vitro model by inducing human alveolar epithelial cells with lipopolysaccharide (LPS) and found that KBTBD7 was highly expressed in the in vitro model. KBTBD7 knockdown could reduce the inflammatory response by inhibiting the secretion of pro-inflammatory factors and inhibit the production of ROS, ferroptosis and mitochondrial dysfunction. Mechanistic studies show that KBTBD7 interacts with FOXA1, promotes FOXA1 expression, and indirectly inhibits SLC7A11 transcription. In vivo studies have shown that knocking down KBTBD7 improves lung tissue damage in septic lung injury mice, inhibits inflammatory factors, ROS production and ferroptosis. Taken together, knockdown of KBTBD7 shows an alleviating effect on septic lung injury in vitro and in vivo, providing a potential therapeutic target for the treatment of septic lung injury.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Lesão Pulmonar , Camundongos Endogâmicos C57BL , Mitocôndrias , Espécies Reativas de Oxigênio , Sepse , Animais , Humanos , Mitocôndrias/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lipopolissacarídeos , Masculino , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/imunologia , Células Epiteliais Alveolares/metabolismo
5.
J Virol ; 98(5): e0049324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38578092

RESUMO

CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE: CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.


Assuntos
Linfócitos T CD4-Positivos , Infecções por Herpesviridae , Interferon gama , Células Matadoras Naturais , Receptores de Interferon , Rhadinovirus , Animais , Linfócitos T CD4-Positivos/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Células Matadoras Naturais/imunologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Rhadinovirus/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon gama , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/virologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CD11c/metabolismo , Antígeno CD11c/imunologia , Pulmão/imunologia , Pulmão/virologia
6.
Arch. bronconeumol. (Ed. impr.) ; 60(4): 200-206, abr.2024. tab, graf
Artigo em Inglês | IBECS | ID: ibc-232041

RESUMO

Background: HIV can infect bronchial epithelial cells rendering individuals susceptible to lung damage. Our objective was to determine the effects of human immunodeficiency virus (HIV) infection on pulmonary function tests. Methods: We performed a meta-analysis after conducting a literature search in PubMed, Embase, Cochrane Library and Virtual Health Library databases from inception to December 31st, 2022. We employed the inverse variance method with a random effects model to calculate the effect estimate as the mean difference (MD) and 95% confidence interval (CI). We calculated the heterogeneity with the I2 statistic and performed a meta-regression analysis by age, sex, smoking, CD4 T-cells count and antiretroviral therapy. We also conducted a sensitivity analysis according to the studies’ publication date, and excluding the study with the greatest weight in the effect. The PROSPERO registry number was CRD42023401105. Results: The meta-analysis included 20 studies, with 7621 living with HIV and 7410 control participants. The pooled MD (95%CI) for the predicted percentage of FEV1, FVC and DLCO were −3.12 (−5.17, −1.06); p=0.003, −1.51 (−3.04, 0.02); p=0.05, and −5.26 (−6.64, −3.87); p<0.001, respectively. The pooled MD for FEV1/FVC was −0.01 (−0.02, −0.01); p=0.002. In all cases, there was a considerable heterogeneity. The meta-regression analysis showed that among studies heterogeneity was not explained by patient age, smoking, CD4 T-cells count or antiretroviral therapy. Conclusion: Pulmonary function tests are impaired in people living with HIV, independently of age, smoking, CD4 T-cells count, and geographical region. (AU)


Assuntos
Humanos , HIV , Células Epiteliais Alveolares , Brônquios , Pulmão , Heterogeneidade Genética , Tabagismo , Contagem de Células
7.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613355

RESUMO

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Cofator PQQ/farmacologia , Transição Epitelial-Mesenquimal , Células Epiteliais Alveolares , Material Particulado/toxicidade
8.
PLoS One ; 19(4): e0302436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662786

RESUMO

Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.


Assuntos
COVID-19 , Canais Epiteliais de Sódio , Furina , Camundongos Transgênicos , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Canais Epiteliais de Sódio/metabolismo , Animais , Humanos , Camundongos , Furina/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Células HEK293
9.
Nat Commun ; 15(1): 3288, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627401

RESUMO

Lactation insufficiency affects many women worldwide. During lactation, a large portion of mammary gland alveolar cells become polyploid, but how these cells balance the hyperproliferation occurring during normal alveologenesis with terminal differentiation required for lactation is unknown. Here, we show that DNA damage accumulates due to replication stress during pregnancy, activating the DNA damage response. Modulation of DNA damage levels in vivo by intraductal injections of nucleosides or DNA damaging agents reveals that the degree of DNA damage accumulated during pregnancy governs endoreplication and milk production. We identify a mechanism involving early mitotic arrest through CDK1 inactivation, resulting in a heterogeneous alveolar population with regards to ploidy and nuclei number. The inactivation of CDK1 is mediated by the DNA damage response kinase WEE1 with homozygous loss of Wee1 resulting in decreased endoreplication, alveologenesis and milk production. Thus, we propose that the DNA damage response to replication stress couples proliferation and endoreplication during mammary gland alveologenesis. Our study sheds light on mechanisms governing lactogenesis and identifies non-hormonal means for increasing milk production.


Assuntos
Células Epiteliais Alveolares , Glândulas Mamárias Humanas , Gravidez , Animais , Feminino , Humanos , Endorreduplicação , Glândulas Mamárias Animais , Lactação/genética , Leite
10.
Clin Sci (Lond) ; 138(8): 537-554, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38577922

RESUMO

Patients with pulmonary fibrosis (PF) often experience exacerbations of their disease, characterised by a rapid, severe deterioration in lung function that is associated with high mortality. Whilst the pathobiology of such exacerbations is poorly understood, virus infection is a trigger. The present study investigated virus-induced injury responses of alveolar and bronchial epithelial cells (AECs and BECs, respectively) from patients with PF and age-matched controls (Ctrls). Air-liquid interface (ALI) cultures of AECs, comprising type I and II pneumocytes or BECs were inoculated with influenza A virus (H1N1) at 0.1 multiplicity of infection (MOI). Levels of interleukin-6 (IL-6), IL-36γ and IL-1ß were elevated in cultures of AECs from PF patients (PF-AECs, n = 8-11), being markedly higher than Ctrl-AECs (n = 5-6), 48 h post inoculation (pi) (P<0.05); despite no difference in H1N1 RNA copy numbers 24 h pi. Furthermore, the virus-induced inflammatory responses of PF-AECs were greater than BECs (from either PF patients or controls), even though viral loads in the BECs were overall 2- to 3-fold higher than AECs. Baseline levels of the senescence and DNA damage markers, nuclear p21, p16 and H2AXγ were also significantly higher in PF-AECs than Ctrl-AECs and further elevated post-infection. Senescence induction using etoposide augmented virus-induced injuries in AECs (but not viral load), whereas selected senotherapeutics (rapamycin and mitoTEMPO) were protective. The present study provides evidence that senescence increases the susceptibility of AECs from PF patients to severe virus-induced injury and suggests targeting senescence may provide an alternative option to prevent or treat the exacerbations that worsen the underlying disease.


Assuntos
Células Epiteliais Alveolares , Vírus da Influenza A Subtipo H1N1 , Fibrose Pulmonar , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/metabolismo , Fibrose Pulmonar/virologia , Fibrose Pulmonar/patologia , Masculino , Influenza Humana/virologia , Influenza Humana/complicações , Influenza Humana/patologia , Pessoa de Meia-Idade , Feminino , Células Cultivadas , Idoso , Senescência Celular , Estudos de Casos e Controles , Citocinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(16): e2400077121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598345

RESUMO

Type 2 alveolar epithelial cells (AEC2s) are stem cells in the adult lung that contribute to lower airway repair. Agents that promote the selective expansion of these cells might stimulate regeneration of the compromised alveolar epithelium, an etiology-defining event in several pulmonary diseases. From a high-content imaging screen of the drug repurposing library ReFRAME, we identified that dipeptidyl peptidase 4 (DPP4) inhibitors, widely used type 2 diabetes medications, selectively expand AEC2s and are broadly efficacious in several mouse models of lung damage. Mechanism of action studies revealed that the protease DPP4, in addition to processing incretin hormones, degrades IGF-1 and IL-6, essential regulators of AEC2 expansion whose levels are increased in the luminal compartment of the lung in response to drug treatment. To selectively target DPP4 in the lung with sufficient drug exposure, we developed NZ-97, a locally delivered, lung persistent DPP4 inhibitor that broadly promotes efficacy in mouse lung damage models with minimal peripheral exposure and good tolerability. This work reveals DPP4 as a central regulator of AEC2 expansion and affords a promising therapeutic approach to broadly stimulate regenerative repair in pulmonary disease.


Assuntos
Células Epiteliais Alveolares , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Dipeptidil Peptidase 4/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Pulmão/metabolismo , Modelos Animais de Doenças
12.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673850

RESUMO

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Assuntos
Isotiocianatos , Fator 2 Relacionado a NF-E2 , Quassinas , Sulfóxidos , Transcriptoma , Animais , Bovinos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Isotiocianatos/farmacologia , Quassinas/farmacologia , Sulfóxidos/farmacologia , Transcriptoma/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Simulação por Computador , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
13.
Sci Rep ; 14(1): 9723, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678068

RESUMO

Secondary lung injury after SCI is a major cause of patient mortality, with apoptosis playing a key role. This study aimed to explore the impact of treadmill training and miR145-5p on the MAPK/Erk signaling pathway and apoptosis in rats with complete SCI. SD rats were used to establish T10 segmental complete SCI models and underwent treadmill training 3, 7, or 14 days postinjury. Various techniques including arterial blood gas analysis, lung wet/dry weight ratio, HE staining, immunofluorescence staining, immunohistochemical staining, qRT-PCR, and Western blotting were employed to assess alterations in lung function and the expression levels of crucial apoptosis-related factors. In order to elucidate the specific mechanism, the impact of miR145-5p on the MAPK/Erk pathway and its role in apoptosis in lung cells were confirmed through miR145-5p overexpression and knockdown experiments. Following spinal cord injury (SCI), an increase in apoptosis, activation of the MAPK/Erk pathway, and impairment of lung function were observed in SCI rats. Conversely, treadmill training resulted in a reduction in alveolar cell apoptosis, suppression of the MAPK/Erk pathway, and enhancement of lung function. The gene MAP3K3 was identified as a target of miR145-5p. The influence of miR145-5p on the MAPK/Erk pathway and its impact on apoptosis in alveolar cells were confirmed through the manipulation of miR145-5p expression levels. The upregulation of miR145-5p in spinal cord injury (SCI) rats led to a reduction in MAP3K3 protein expression within lung tissues, thereby inhibiting the MAPK/Erk signaling pathway and decreasing apoptosis. Contrarily, rats with miR145-5p knockdown undergoing treadmill training exhibited an increase in miR145-5p expression levels, resulting in the inhibition of MAP3K3 protein expression in lung tissues, suppression of the MAPK/Erk pathway, and mitigation of lung cell apoptosis. Ultimately, the findings suggest that treadmill training may attenuate apoptosis in lung cells post-spinal cord injury by modulating the MAP3K3 protein through miR145-5p to regulate the MAPK/Erk signaling pathway.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , MicroRNAs , Condicionamento Físico Animal , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Ratos , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Células Epiteliais Alveolares/metabolismo , Modelos Animais de Doenças
14.
FASEB J ; 38(8): e23612, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648494

RESUMO

Considerable progress has been made in understanding the function of alveolar epithelial cells in a quiescent state and regeneration mechanism after lung injury. Lung injury occurs commonly from severe viral and bacterial infections, inhalation lung injury, and indirect injury sepsis. A series of pathological mechanisms caused by excessive injury, such as apoptosis, autophagy, senescence, and ferroptosis, have been studied. Recovery from lung injury requires the integrity of the alveolar epithelial cell barrier and the realization of gas exchange function. Regeneration mechanisms include the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and proteins. While alveoli are damaged, alveolar type II (AT2) cells proliferate and differentiate into alveolar type I (AT1) cells to repair the damaged alveolar epithelial layer. Alveolar epithelial cells are surrounded by various cells, such as fibroblasts, endothelial cells, and various immune cells, which affect the proliferation and differentiation of AT2 cells through paracrine during alveolar regeneration. Besides, airway epithelial cells also contribute to the repair and regeneration process of alveolar epithelium. In this review, we mainly discuss the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and transcription factors.


Assuntos
Células Epiteliais Alveolares , Lesão Pulmonar , Regeneração , Humanos , Regeneração/fisiologia , Animais , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Transdução de Sinais , Diferenciação Celular
15.
Respir Res ; 25(1): 176, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658970

RESUMO

BACKGROUND: Abnormal lipid metabolism has recently been reported as a crucial signature of idiopathic pulmonary fibrosis (IPF). However, the origin and biological function of the lipid and possible mechanisms of increased lipid content in the pathogenesis of IPF remains undetermined. METHODS: Oil-red staining and immunofluorescence analysis were used to detect lipid accumulation in mouse lung fibrosis frozen sections, Bleomycin-treated human type II alveolar epithelial cells (AECIIs) and lung fibroblast. Untargeted Lipid omics analysis was applied to investigate differential lipid species and identified LysoPC was utilized to treat human lung fibroblasts and mice. Microarray and single-cell RNA expression data sets identified lipid metabolism-related differentially expressed genes. Gain of function experiment was used to study the function of 3-hydroxy-3-methylglutaryl-Coa Synthase 2 (HMGCS2) in regulating AECIIs lipid metabolism. Mice with AECII-HMGCS2 high were established by intratracheally delivering HBAAV2/6-SFTPC- HMGCS2 adeno-associated virus. Western blot, Co-immunoprecipitation, immunofluorescence, site-directed mutation and flow cytometry were utilized to investigate the mechanisms of HMGCS2-mediated lipid metabolism in AECIIs. RESULTS: Injured AECIIs were the primary source of accumulated lipids in response to Bleomycin stimulation. LysoPCs released by injured AECIIs could activate lung fibroblasts, thus promoting the progression of pulmonary fibrosis. Mechanistically, HMGCS2 was decreased explicitly in AECIIs and ectopic expression of HMGCS2 in AECIIs using the AAV system significantly alleviated experimental mouse lung fibrosis progression via modulating lipid degradation in AECIIs through promoting CPT1A and CPT2 expression by interacting with PPARα. CONCLUSIONS: These data unveiled a novel etiological mechanism of HMGCS2-mediated AECII lipid metabolism in the genesis and development of pulmonary fibrosis and provided a novel target for clinical intervention.


Assuntos
Regulação para Baixo , Fibroblastos , Hidroximetilglutaril-CoA Sintase , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Animais , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Bleomicina/toxicidade , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/biossíntese , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , Metabolismo dos Lipídeos/fisiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/genética
16.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579712

RESUMO

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Assuntos
Células Epiteliais Alveolares , Linhagem da Célula , Pulmão , Regeneração , Células-Tronco , Animais , Camundongos , Células-Tronco/metabolismo , Células-Tronco/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/citologia , Pulmão/citologia , Pulmão/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Receptores Notch/metabolismo , Lesão Pulmonar/patologia , Diferenciação Celular , Transdução de Sinais , Camundongos Endogâmicos C57BL
17.
J Ethnopharmacol ; 330: 118230, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38643862

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ferulic acid (FA) has shown potential therapeutic applications in treating lung diseases. However, the underlying mechanisms by which FA ameliorates acute lung injury (ALI) have not been distinctly elucidated. AIM OF THE STUDY: The project aims to observe the therapeutic effects of FA on lipopolysaccharide-induced ALI and to elucidate its specific mechanisms in regulating epithelial sodium channel (ENaC), which majors in alveolar fluid clearance during ALI. MATERIALS AND METHODS: In this study, the possible pathways of FA were determined through network pharmacology analyses. The mechanisms of FA in ALI were verified by in vivo mouse model and in vitro studies, including primary alveolar epithelial type 2 cells and three-dimensional alveolar organoid models. RESULTS: FA ameliorated ALI by improving lung pathological changes, reducing pulmonary edema, and upregulating the α/γ-ENaC expression in C57BL/J male mice. Simultaneously, FA was observed to augment ENaC levels in both three-dimensional alveolar organoid and alveolar epithelial type 2 cells models. Network pharmacology techniques and experimental data from inhibition or knockdown of IkappaB kinase ß (IKKß) proved that FA reduced the phosphorylation of IKKß/nuclear factor-kappaB (NF-κB) and eliminated the lipopolysaccharide-inhibited expression of ENaC, which could be regulated by nuclear protein NF-κB p65 directly. CONCLUSIONS: FA could enhance the expression of ENaC at least in part by inhibiting the IKKß/NF-κB signaling pathway, which may potentially pave the way for promising treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Ácidos Cumáricos , Canais Epiteliais de Sódio , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Farmacologia em Rede , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Ácidos Cumáricos/farmacologia , Masculino , Canais Epiteliais de Sódio/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Sódio/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo
18.
Ecotoxicol Environ Saf ; 277: 116357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677073

RESUMO

Polystyrene microplastics (PS-MPs) are new types of environmental pollutant that have garnered significant attention in recent years since they were found to cause damage to the human respiratory system when they are inhaled. The pulmonary fibrosis is one of the serious consequences of PS-MPs inhalation. However, the impact and underlying mechanisms of PS-MPs on pulmonary fibrosis are not clear. In this study, we studied the potential lung toxicity and PS-MPs-developed pulmonary fibrosis by long-term intranasal inhalation of PS-MPs. The results showed that after exposing to the PS-MPs, the lungs of model mouse had different levels of damage and fibrosis. Meanwhile, exposing to the PS-MPs resulted in a markedly decrease in glutathione (GSH), an increase in malondialdehyde (MDA), and iron overload in the lung tissue of mice and alveolar epithelial cells (AECs). These findings suggested the occurrence of PS-MP-induced ferroptosis. Inhibitor of ferroptosis (Fer-1) had alleviated the PS-MPs-induced ferroptosis. Mechanically, PS-MPs triggered cell ferroptosis and promoted the development of pulmonary fibrosis via activating the cGAS/STING signaling pathway. Inhibition of cGAS/STING with G150/H151 attenuated pulmonary fibrosis after PS-MPs exposure. Together, these data provided novel mechanistic insights of PS-MPs-induced pulmonary fibrosis and a potential therapeutic paradigm.


Assuntos
Células Epiteliais Alveolares , Ferroptose , Proteínas de Membrana , Microplásticos , Poliestirenos , Fibrose Pulmonar , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Poliestirenos/toxicidade , Camundongos , Transdução de Sinais/efeitos dos fármacos , Microplásticos/toxicidade , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Proteínas de Membrana/metabolismo , Masculino , Camundongos Endogâmicos C57BL
19.
Mol Med ; 30(1): 54, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649802

RESUMO

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Assuntos
Bleomicina , Senescência Celular , Reparo do DNA , Rad51 Recombinase , Bleomicina/efeitos adversos , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Animais , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Humanos , Camundongos , Reparo do DNA/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Células A549 , Dano ao DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos
20.
Cell Commun Signal ; 22(1): 245, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671456

RESUMO

BACKGROUND: The alveolar epithelial type II cell (AT2) and its senescence play a pivotal role in alveolar damage and pulmonary fibrosis. Cell circadian rhythm is strongly associated with cell senescence. Differentiated embryonic chondrocyte expressed gene 1 (DEC1) is a very important circadian clock gene. However, the role of DEC1 in AT2 senescence and pulmonary fibrosis was still unclear. RESULTS: In this study, a circadian disruption model of light intervention was used. It was found that circadian disruption exacerbated pulmonary fibrosis in mice. To understand the underlying mechanism, DEC1 levels were investigated. Results showed that DEC1 levels increased in lung tissues of IPF patients and in bleomycin-induced mouse fibrotic lungs. In vitro study revealed that bleomycin and TGF-ß1 increased the expressions of DEC1, collagen-I, and fibronectin in AT2 cells. Inhibition of DEC1 mitigated bleomycin-induced fibrotic changes in vitro and in vivo. After that, cell senescence was observed in bleomycin-treated AT2 cells and mouse models, but these were prevented by DEC1 inhibition. At last, p21 was confirmed having circadian rhythm followed DEC1 in normal conditions. But bleomycin disrupted the circadian rhythm and increased DEC1 which promoted p21 expression, increased p21 mediated AT2 senescence and pulmonary fibrosis. CONCLUSIONS: Taken together, circadian clock protein DEC1 mediated pulmonary fibrosis via p21 and cell senescence in alveolar epithelial type II cells.


Assuntos
Bleomicina , Senescência Celular , Ritmo Circadiano , Fibrose Pulmonar , Animais , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...